Summing Across Different Active Zones can Explain the Quasi-Linear Ca2+-Dependencies of Exocytosis by Receptor Cells

نویسندگان

  • Peter Heil
  • Heinrich Neubauer
چکیده

Several recent studies of mature auditory and vestibular hair cells (HCs), and of visual and olfactory receptor cells, have observed nearly linear dependencies of the rate of neurotransmitter release events, or related measures, on the magnitude of Ca(2+)-entry into the cell. These relationships contrast with the highly supralinear, third to fourth power, Ca(2+)-dependencies observed in most preparations, from neuromuscular junctions to central synapses, and also in HCs from immature and various mutant animals. They also contrast with the intrinsic, biochemical, Ca(2+)-cooperativity of the ubiquitous Ca(2+)-sensors involved in fast exocytosis (synaptotagmins I and II). Here, we propose that the quasi-linear dependencies result from measuring the sum of several supralinear, but saturating, dependencies with different sensitivities at individual active zones of the same cell. We show that published experimental data can be accurately accounted for by this summation model, without the need to assume altered Ca(2+)-cooperativity or nanodomain control of release. We provide support for the proposal that the best power is 3, and we discuss the large body of evidence for our summation model. Overall, our idea provides a parsimonious and attractive reconciliation of the seemingly discrepant experimental findings in different preparations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient stimulus-secretion coupling at ribbon synapses requires RIM-binding protein tethering of L-type Ca2+ channels.

Fast neurotransmitter release from ribbon synapses via Ca2+-triggered exocytosis requires tight coupling of L-type Ca2+ channels to release-ready synaptic vesicles at the presynaptic active zone, which is localized at the base of the ribbon. Here, we used genetic, electrophysiological, and ultrastructural analyses to probe the architecture of ribbon synapses by perturbing the function of RIM-bi...

متن کامل

Short-term changes in the Ca2+-exocytosis relationship during repetitive pulse protocols in bovine adrenal chromaffin cells.

Stimulus-secretion coupling was monitored with capacitance detection in bovine chromaffin cells recorded in perforated patch mode and stimulated with trains of depolarizing pulses. A subset of stimulus trains evoked a response with a Ca2+-exocytosis relationship identical to that obtained for single depolarizing pulses (Engisch and Nowycky, 1996). Other trains evoked responses with enhanced or ...

متن کامل

Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse.

Hearing relies on faithful sound coding at hair cell ribbon synapses, which use Ca2+-triggered glutamate release to signal with submillisecond precision. Here, we investigated stimulus-secretion coupling at mammalian inner hair cell (IHC) synapses to explore the mechanisms underlying this high temporal fidelity. Using nonstationary fluctuation analysis on Ca2+ tail currents, we estimate that IH...

متن کامل

Granule-specific ATP requirements for Ca2+-induced exocytosis in human neutrophils. Evidence for substantial ATP-independent release.

Ca2+-induced exocytosis in neuronal and neuroendocrine cells involves ATP-dependent steps believed to 'prime' vesicles for exocytosis. Primed, docked vesicles are released in response to Ca2+ influx through voltage-gated Ca2+ channels. Neutrophils, however, do not possess voltage-gated Ca2+ channels and appear to have no docked vesicles. Furthermore, neutrophils have several types of granules w...

متن کامل

Ca2+-induced changes in SNAREs and synaptotagmin I correlate with triggered exocytosis from chromaffin cells: insights gleaned into the signal transduction using trypsin and botulinum toxins.

Ca2+-triggered catecholamine exocytosis from chromaffin cells involves SNAP-25, synaptobrevin and syntaxin (known as SNAREs). Synaptotagmin I has been implicated as the Ca2+-sensor because it binds Ca2+, and this enhances its binding to syntaxin, SNAP-25 and phospholipids in vitro. However, most of these interactions are only mediated by [Ca2+]i two orders of magnitude higher than that needed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010